巴克豪森跳变(Barkhausen jump),在磁化过程中畴壁发生跳跃式的不可逆位移过程,由巴克豪森(Barkhausen)首先从实验上发现这一现象。由于这种畴壁的跳跃式位移而造成试样中磁通的不连续变化,因此可以通过实验测定出来。亦称巴克豪森效应(Barkhausen effect)。
正反馈
巴克豪森准则(Barkhausen criterion)是电子电路中设计振荡器的一个重要准则,其指出,当在反馈回路中产生的相位移位为2^nπ时,反馈系统才会产生正反馈,使电路发生振荡
满足巴克豪森准则意味着电路具有恰好的正反馈,因此电路可以生成自激(自激震荡)
电路系统通过成倍增加信号振荡,实现自维持
你说的都需要。需要一个可行的完整电气或电子回路,此回路当然需要供电才能动作。
以上都是基本的条件。
就理论上来说,一般说的发振条件,是指振荡电路要满足巴克豪森稳定性准则 (巴克好森稳定性准则,Barkhausen stability criterion) 等数学条件。
公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开普勒三定律,同为牛顿力学的基础。
公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。
公元1646年,法国科学家帕斯卡实验验证大气压的存在。
公元1654年,德国科学家格里开发明抽气泵,获得真空。
公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥特也独立的发现此定律。
公元1663年,格里开作马德堡半球实验。
公元1666年,英国科学家牛顿用三棱镜作色散实验。
公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。
公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解释。
公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。
公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得静电力的平方反比定律。
公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过直到1791年他才发表这方面的论文。
公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。
公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研究发表于1802年。
公元1914年,英国科学家莫塞莱发现原子序数与元素辐射特征线之间的关系,奠定了X射线光谱学的基础。
公元1914年,德国科学家弗朗克与赫兹测量汞的激发电位。
1915年,丹麦科学家玻尔判定他们测的结果实际上是第一激发电位,这正是玻尔1913年定态跃迁原子模型理论的极好证据。
公元1914年,英国科学家查德威克发现β能谱。
公元1915年,在爱因斯坦的倡议下,荷兰科学家德哈斯首次测量回转磁效应。
公元1916年,荷兰科学家德拜提出X射线粉末衍射法。
公元1919年,英国科学家阿斯顿发明质谱仪,为同位素的研究提供重要手段。
公元1919年,卢瑟福首次实现人工核反应。
公元1919年,德国科学家巴克家森发现磁畴。
公元1922年,德国科学家斯特恩与盖拉赫使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。
公元1923年,美国科学家康普顿用光子和电子相互碰撞解释X射线散射中波长变长的实验结果,称康普顿效应。
公元1927年,美国科学家戴维森与革末用低速电子进行电子散射实验,证实了电子衍射。同年,英国科学家G.P.汤姆逊用高速电子获电子衍射花样,他们的工作为法国科学家德布罗意的物质波理论提供了实验证据。
公元1928年,卡文迪许实验室的印度科学家喇曼等人发现散射光的频率变化,即喇曼效应。
公元1931年,美国科学家劳伦斯等人建成第一台回旋加速器。
公元1932年,英国科学家考克拉夫特与爱尔兰科学家瓦尔顿共同发明高电压倍加器,用以加速质子,实现人工核蜕变。
公元1932年,美国科学家尤里将天然液态氢蒸发浓缩后,发现氢的同位素—氘的存在。
公元1932年,查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒子,质量大体与质子相等。据此曾安排实验,但末获成果。1930年,德国科学家玻特等人在α射线轰击铍的实验中,发现过一种穿透力极强的射线,误认为γ射线;1931年,法国科学家约里奥与伊仑·居里让这种穿透力极强的射线通过石蜡,打出高速质子。查德威克接着做了大量实验,并利用威尔逊云室拍照,以无可辩驳的事实说明这一射线即是卢瑟福预言的中子。
公元1932年,美国科学家安德森从宇宙线中发现正电子,证实狄拉克的预言。
公元1933年,美国科学家图夫建立第一台静电加速器。
公元1933年,英国科学家布拉凯特等人从云室照片中发现正负电子对。
公元1934年,前苏联科学家切仑柯夫发现液体在β射线照射下发光的一种现象,称切仑柯夫辐射。
公元1934年,法国科学家约里奥·居里夫妇发现人工放射性。
公元1936年,安德森等人发现μ介子。
公元1938年,德国科学家哈恩与史特拉斯曼发现铀裂变。
公元1938年,前苏联科学家卡皮查用实验证实液氦的超流动性。
公元1939年,奥地利裔美国科学家拉比等人用分子束磁共振法测核磁矩。
公元1940年,美国科学家开尔斯特等人用分子建造第一台电子感应加速器。
公元1946年,美国科学家珀塞尔用共振吸收法测核磁矩,布拉赫用核感应法测核磁矩,两人从不同的角度实现了核磁共振。这种方法可以使核磁矩和磁场的测量精度大大提高。
公元1947年,德裔美国科学家库什精确测量电子磁矩,发现实验结果与理论预计有微小偏差。
公元1947年,美国科学家兰姆与雷瑟福用微波方法精确测出氢原子能级的差值,发现英国科学家狄拉克的量子理论仍与实际有不符之处。这一实验为量子电动力学的发展提供了实验依据。
公元1948年,美国科学家肖克利、巴丁与布拉顿共同发明晶体三级管。
公元1952年,美国科学家格拉塞发明气泡室,比威尔逊云室更为灵敏。
公元1954年,美国科学家汤斯等人制成受激辐射的微波放大器——曼塞。
公元1955年,美国科学家张伯伦与希格里等人发现反质子。1957年,希格里等人又发现反中子。
公元1956年,华裔美国科学家吴健雄等人实验验证了华裔美国科学家李政道、杨振宁提出的在弱相互作用下宇称不守恒的理论(1956年)。实验方法是将钴-60置于极低温(0.01K)的环境中测量β蜕变。
公元1958年,德国科学家穆斯堡尔实现γ射线的无反冲共振吸收(穆斯堡尔效应)。
公元1960年,美国科学家梅曼制成红宝石激光器,实现了肖洛和汤斯1958年的预言。
公元1962年,英国科学家约瑟夫森发现约瑟夫森效应。
另附
1900--1909
1900年,瑞利发表适用于长波范围的黑体辐射公式。
1900年,普朗克(M.Plank,1858—1947)提出了符合整个波长范围的黑体辐射公式,开
用能量量子化假设从理论上导出了这个公式。
1900年,维拉尔德(P.Willard,1860一1934)发现γ射线。
1901年,考夫曼(W.Kaufmann,1871—1947)从镭辐射测射线在电场和磁场中的偏转,从
而发现电子质量随速度变化。
1901年,理查森(O.W.Richardson,1879—1959)发现灼热金属表面的电子发射规律。
后经多年实验和理论研究,又对这一定律作进一步修正。
1902年,勒纳德从光电效应实验得到光电效应的基本规律:电子的最大速度与光强无关,
为爱因斯坦的光量子假说提供实验基础。
1902年,吉布斯出版《统计力学的基本原理》,创立统计系综理论。
1903年,卢瑟福和索迪(F.Soddy,1877一1956)发表元素的嬗变理论。
1905年,爱因斯坦(A.Einstein,1879—1955)发表关于布朗运动的论文,并发表光量子
假说,解释了光电效应等现象。
1905年,朗之万(P.Langevin,1872—1946)发表顺磁性的经典理论。
1905年,爱因斯坦发表《关于运动媒质的电动力学》一文,首次提出狭义相对论的基本原
理,发现质能之间的相当性。
1906年,爱因斯坦发表关于固体热容的量子理论。
1907年,外斯(P.E.Weiss,1865—1940)发表铁磁性的分子场理论,提出磁畴假设。
1908年,昂纳斯(H.Kammerlingh—Onnes,1853—1926)液化了最后一种“永久气体”氦。
1908年,佩兰(J.B.Perrin,1870—1942)实验证实布朗运动方程,求得阿佛伽
德罗常数。
1908—1910年,布雪勒(A.H.Bucherer,1863—1927)等人,分别精确测量出电子质量
随速度的变化,证实了洛仑兹-爱因斯坦的质量变化公式。
1908年,盖革(H.Geiger,1882—1945)发明计数管。卢瑟福等人从粒子测定电子电荷e
值。
1906—1917年,密立根(R.A.Millikan,1868—1953)测单个电子电荷值,前后历经11
年,实验方法做过三次改革,做了上千次数据。
1909年,盖革与马斯登(E.Marsden)在卢瑟福的指导下,从实验发现粒子碰撞金属箔产
生大角度散射,导致1911年卢瑟福提出有核原子模型的理论。这一理论于1913年为盖
革和马斯登的实验所证实。
1910--1919
1911年,昂纳斯发现汞、铅。锡等金属在低温下的超导电性。
1911年,威尔逊(C.T.R.Wilson,i869—1959)发明威尔逊云室,为核物理的研究提供
了重要实验手段。
1911年,赫斯(V.F.Hess,1883—1964)发现宇宙射线。
1912年,劳厄(M.V.Laue,1879—1960)提出方案,弗里德里希(W. Friedrich),尼平
(P.KniPning,1883—1935)进行X射线衍射实验,从而证实了X射线的波动性。
1912年,能斯特(W. Nernst,1864—1941)提出绝对零度不能达到定律(即热力学第三定
律)。
1913年,斯塔克(J.Stark,1874—1957)发现原子光谱在电场作用下的分裂象(斯塔克效应)。
1913年,玻尔(N.Bohr,1885—1962)发表氢原子结构理论,解释了氢原子光谱。
1913年,布拉格父子(W.H.Bragg,1862—l942;W.L.Bragg,1890—1971)研究X射
线衍射,用X射线晶体分光仪,测定X射线衍射角,根据布拉格公式:Zdsin6=算出晶
格常数d。
1914年,莫塞莱(H.G.J.Moseley,1887—1915)发现原子序数与元素辐射特征线之间
的关系,奠定了X射线光谱学的基础。
1914年,弗朗克(J. Franck,1882——1964)与 G.赫兹(G.Hertz,1887—1975)测
汞的激发电位。
1914年,查德威克(J.Chadwick,1891—1974)发现能谱。
1914年,西格班(K.M.G.Siegbahn,1886—1978)开始研究 X射线光谱学。
1915年,在爱因斯坦的倡仪下,德哈斯(W.J.de Hass,1878—1960)首次测量回转磁效
应。
1915年,爱因斯坦建立了广义相对论。
1916年,密立根用实验证实了爱因斯坦光电方程。
1916年,爱因斯坦根据量子跃迁概念推出普朗克辐射公式,同时提出了受激辐射理论,后
发展为激光技术的理论基础。
1916年,德拜(P.J.W.Debye,1884—1966)提出 X射线粉末衍射法。
1919年,爱丁顿(A.S.Eddington,1882—1944)等人在日食观测中证实了爱因斯坦关于
引力使光线弯曲的预言。
1919年,阿斯顿(F.W.Aston,1877—1945)发明质谱仪,为同位素的研究提供重要手段。
1919年,卢瑟福首次实现人工核反应。
1919年,巴克豪森(H.G.Barkhausen)发现磁畴。
1920--1929
1921年,瓦拉塞克发现铁电性。
1922年,斯特恩(O.Stern,1888—1969)与盖拉赫(W.Gerlach,1889—1979)
使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。
1923年,康普顿(A.H.Compton,1892—1962)用光子和电子相互碰撞解释X射线散射中
波长变长的实验结果,称康普顿效应。
1924年,德布罗意(L.de Broglie,1892—1987)提出微观粒子具有波粒二象性的假设。
1924年,玻色(S.Bose,1894—1974)发表光子所服从的统计规律,后经爱因斯坦补充建立了玻色一爱因斯坦 统计。
1925年,泡利(W.Pauli,1900—1958)发表不相容原理。
1925年,海森伯(W.K.Heisenberg,1901—1976)创立矩阵力学。
1925年,乌伦贝克(G.E.Uhlenbeck,1900--)和高斯密特(S.A.Goudsmit,1902—1979)提出电子自旋假设。
1926年,薛定愕(E.Schrodinger,1887—1961)发表波动力学,证明矩阵力学和波动力
学的等价性。
1926年,费米(E.Fermi,1901—1954)与狄拉克(P.A.M.Dirac,1902—1984)独立
提出费米-狄拉克统计。
1926年,玻恩(M.Born,1882—1970)发表波函数的统计诠释。
1927年,海森伯发表不确定原理。
1927年,玻尔提出量子力学的互补原理。
1927年,戴维森(C.J.Davisson,1881—1958)与革末(L.H.Germer,1896--
1971)用低速电子进行电子散射实验,证实了电子衍射。同年,G.P.汤姆生
(G.P.Thomson,1892—1975)用高速电子获电子衍射花样。
1928年,拉曼(C.V.Raman,1888--1970)等人发现散射光的频率变化,即拉曼效应。
1928年,狄拉克发表相对论电子波动方程,把电子的相对论性运动和自旋、磁矩联系了起
来。
1928—1930年,布洛赫(F.BIoch,1905—1983)等人为固体的能带理论奠定了基础。
1930--1939
1930—1931年,狄拉克提出正电子的空穴理论和磁单极子理论。
1931年,A.H.威尔逊(A.H.Wilson)提出金属和绝缘体相区别的能带模型,并预言介
于两者之间存在半导体,为半导体的发展提供了理论基础。
1931年,劳伦斯(E.O.Lawrence,1901—1958)等人建成第一台回旋加速器。
1932年,考克拉夫特(J.D.Cockcroft,1897—1967)与沃尔顿(E.T.Walton)发明高
电压倍加器,用以加速质子,实现人工核蜕变。
1932年,尤里(H.C.Urey,1893—1981)将天然液态氢蒸发浓缩后,发现氢的同位素
——氘的存在。
1932年,查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒
子,质量大体与质予相等。据此曾安排实验,但未获成果。
193O年,玻特(w.B大成,18盯一1的7)等人在。射线轰击被的实验中,发现过一种穿
透力极强的射线,一误认为、射线,1931年约里奥(F.Joliot,1900—1958)与伊
伦·居里(1.Curie,1897—1956)让这种穿透力极强的射线,通过石蜡,打出高速
质子。查德威克接着做了大量实验,并用威尔逊云室拍照,以无可辩驳的事实说明这
一射线即是卢瑟福预言的中子。
1932年,安德森(C.D.Anderson,1905一)从宇宙线中发现正电子,证实狄拉克的预言。
1932年,诺尔(M.Knoll)和鲁斯卡(E.Ruska)发明透射电子显微镜。 1932年,海森伯、伊万年科(Д.Д.Иваненко)独立发表原子核由质子和中子
组成的假说。
1933年,泡利在索尔威会议上详细论证中微于假说,提出β衰变。
1933年,盖奥克(W.F.Giauque)完成了顺磁体的绝热去磁降温实验,获得千分之几开的
低温。
1933年,迈斯纳(W.Meissner,1882—1974)和奥克森菲尔德(R.Ochsenfeld)发现超
导体具有完全的抗磁性。
1933年,费米发表p衰变的中微子理论。
1933年,图夫(M.A.Tuve)建立第一台静电加速器。
1933年,布拉开特(P.M.S.Blackett,1897—1974)等人从云室照片中发现正负电子对。
1934年,切仑柯夫(Π.A.Черенков)发现液体在β射线照射下发光的一种现象,
称切仑柯夫辐射。
1934年,约里奥-居里夫妇发现人工放射性。
1935年,汤川秀村发表了核力的介于场论,预言了介子的存在。
1935年,F.伦敦和H.伦敦发表超导现象的宏观电动力学理论。
1935年,N.玻尔提出原子核反应的液搞核模型。
1938年,哈恩(O.Hahn,1879—1968)与斯特拉斯曼(F.Strassmann)发现铀裂变。
1938年,卡皮查(П.Л.Капича,1894--)实验证实氦的超流动性。
1998年,F.伦敦提出解释超流动性的统计理论。
1939年,迈特纳(L.Meitner,1878—1968)和弗利行(O.Frisch)根据获滴核模型指出,
哈恩-斯特拉斯曼的实验结果是一种原子核的裂变现象。
1939年,奥本海默(J.R.Oppenheimer,1904—1967)根据广义相对论预言了黑洞的存在。
1939年,拉比(I.I.Rabi,1898—1987)等人用分子束磁共振法测核磁矩。
1940--1949
1940年,开尔斯特(D.W.Kerst)建造第一台电子感应加速器。
1940—1941年,朗道(Л.И.Ландау,1908—1968)提出氦Ⅱ超流性的量子理论。
1941年,布里奇曼(P.W.Bridgeman,1882—1961)发明能产生 10万巴高压的装置。
1942年,在费米主持下美国建成世界上第一座裂变反应堆。
1944—1945年,韦克斯勒(ВИВеклер.1907--1966)和麦克米伦(E.M.McMillan,
1907—)各自独立提出自动稳相原理,为高能加速器的发展开辟了道路。
1946年,阿尔瓦雷兹(L.W.Alvarez,1911--)制成第一台质子直线加速器。
1946年,柏塞尔(E.M.Purcell)用共振吸收法测核磁矩,布洛赫(F.Bloch,1905—1983)用核感应法测核磁矩,两人从不同的角度实现核磁共振。这种方法可以使核磁矩和磁场的测量精度大大提高。
1947年,库什(P.Kusch)精确测量电子磁矩,发现实验结果与理论预计有微小偏差。
1947年,兰姆(W.E.Lamb,Jr.)与雷瑟福(R.C.Retherford)用微波方法精确测出氢原子能级的差值,发现狄拉克的量子理论仍与实际有不符之处。这一实验为量子电动力学的
发展提供了实验依据。
1947年,鲍威尔(C.F.Powell,1903—1969)等用核乳胶的方法在宇宙线中发现π介子。
1947年,罗彻斯特和巴特勒(C.Butler,1922--)在宇宙线中发现奇异粒子。
1947年,H,P.卡尔曼和J.W.科尔特曼等发明闪烁计数器。
1947年,普里高金(I.Prigogine,1917--)提出最小熵产生原理。
1948年,奈耳(L.E.F.Neel,1904--)建立和发展了亚铁磁性的分子场理论。
1948年,张文裕发现μ子系弱作用粒子,并发现了μˉ子原子。
1948年,肖克利(w.Shockley),巴丁(J.Bardeen)与布拉顿(W.H.Brattain)
发明晶体三极管。
1948年,伽柏(D.Gabor,1900—1979)提出现代全息照相术前身的波阵面再现原理。
1948年,朝永振一郎、施温格(1.Schwinger)费因曼(R.P.Feynman,1918--
1988)等分别发表相对论协变的重正化的量子电动力学理论,逐步形成消除发散困难的重
正化方法。
1949年,迈耶(M.G.Mayer)和简森(J.H.D.Jensen)等分别提出核壳层模型理论。
1950-1959
????
1960--现在
1960年,梅曼(T.H.Maiman)制成红宝石激光器,实现了肖洛(A.L.Schawlow)和
汤斯1958年的预言。
1962年,约瑟夫森(B.D.Josephson)发现约瑟夫森效应。
1964年,盖耳曼(M.Gell-Mann)等提出强子结构的夸克模型。
1964年,克洛宁(J.W.Cronin)等实验证实在弱相互作用中CP联合变换守
恒被破坏。
1967—1968年,温伯格(S.Weinberg)、萨拉姆(A.salam)分别提出电弱统一理论标准模型。
1969年,普里高金首次明确提出耗散结构理论。
1973年,哈塞尔特(F.J.Hasert)等发现弱中性流,支持了电弱统一理论。
1974年,丁肇中(1936--)与里希特(B.Richter,1931--)分别发现J/ψ粒子。
1980年,克利青(V.Klitzing,1943--)发现量子霍尔效应。
1983年,鲁比亚(C.Rubbia,1934--)和范德梅尔(S.V.d.Meer,1925--)等人在欧洲核子研究中心发现W±和Z0粒子。
公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。
公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。
公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。
公元1799年,英国科学家戴维做真空中的摩擦实验,以证明热是物体微粒的振动所致。
公元1800年,英国科学家赫休尔从太阳光谱的辐射热效应发现红外线。
公元1801年,德国科学家里特尔从太阳光谱的化学作用,发现紫外线。
公元1801年,英国科学家托马斯·杨用干涉法测光波波长。
公元1802年,英国科学家沃拉斯顿发现太阳光谱中有暗线。
公元1808年,法国科学家马吕斯发现光的偏振现象。
公元1811年,英国科学家布儒斯特发现偏振光的布儒斯特定律。
公元1815年,德国科学家夫琅和费开始用分光镜研究太阳光语中的暗线。
公元1819年,法国科学家杜隆与珀替发现克原子固体比热是一常数,约为6卡/度·克原子,称杜隆·珀替定律。
公元1820年,丹麦科学家奥斯特发现导线通电产生磁效应。
公元1820年,法国科学家毕奥和沙伐由实验归纳出电流元的磁场定律。
公元1820年,法国科学家安培由实验发现电流之间的相互作用力,1822年进一步研究电流之间的相互作用,提出安培作用力定律。
公元1821年,爱沙尼亚科学家塞贝克发现温差电效应(塞贝克效应)。
公元1827年,英国科学家布朗发现悬浮在液体中的细微颗粒作不断地杂乱无章运动,是分子运动论的有力证据。
公元1830年,诺比利发明温差电堆。
公元1831年,法拉第发现电磁感应现象。
公元1834年,法国科学家珀耳帖发现电流可以致冷的珀耳帖效应。
公元1835年,美国科学家亨利发现自感,1842年发现电振荡放电。
常见的应力测试方法
应力仪或者应变仪是来测定物体由于内应力的仪器。一般通过采集应变片的信号,而转化为电信号进行分析和测量。
应力测试一般的方法是将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。应变片其实就是应用了这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅所使用的是铜铬合金材料,这种材料其电阻变化率为常数,它与应变成正比例关系。
我们通过惠斯通电桥,便可以将这种电阻的比例关系转化为电压。然后不同的仪器,可以将这种电压的变化转化成可以测量的数据。
对于应力仪或者应变仪,关键的指标有:
测试精度,采样速度,测试可以支持的通道数,动态范围,支持的应变片型号等。并且,应力仪所配套的软件也至关重要,需要能够实时显示,实时分析,实时记录等各种功能,高端的软件还具有各种信号处理能力。
1906年12月24日,孟昭英出生于河北省乐亭县走马浮村一户农家。他3岁丧父,靠长兄帮助,得以完成学业。
1913年,入走马浮村初等小学。1917年入乐亭县立高等小学。1919年入昌黎县成美中学初中。1923年入北京汇文中学高中。
1924,被保送入燕京大学。在燕大,孟昭英选学理科,当时物理老师柯贝特(C.H.Corbett)讲课引人入胜,这使孟昭英对物理发生兴趣。安德逊(PaulAnderson)和谢玉铭教授都是实验物理学家,在他们的影响下,孟昭英养成了很强的动手能力,为后来的实验物理研究工作打下了良好的基础。
1928年,获得理学学士学位,并因成绩优异获得斐陶斐(ΦTΦ)荣誉学会金钥匙奖。大学毕业后,孟昭英留在该校物理系当助教兼攻读硕士研究生课程,在安德逊和谢玉铭两位教授的指导下。
1931年,以“氢气与铂、铜、镍接触时的电离”的论文获硕士学位,并被提升为讲师。这篇论文发表于1935年《中国化学学会会志》第三卷。在任讲师期间,他与陈尚义等合作完成了“紫外辐射通过中国窗纸的透射”的研究工作。
1933年,由燕京大学推荐,孟昭英获美国洛克菲勒基金资助,到美国加州理工学院攻读博士学位。当时加州理工学院由著名的实验物理学家密立根(R.A.Millikan)主持,已成为美国最有生气的科研和教育中心之一。孟昭英在波泰盼柯(G.Potapenko)教授指导下,研究巴克豪森-库尔兹(Barkhausen-Kurz)效应,经过3年的努力,他用自制微型电子管获得1厘米波长的连续振荡。这是当时用电子管获得振荡波长最短的世界记录。
1933年,孟昭英赴美国加州理工学院攻读博士学位时,对该校波泰盼柯教授在《物理评论》上发表的关于巴克豪森-库尔兹振荡器的几篇论文发生很大兴趣。他决心在波泰盼柯教授指导下,探索用这种器件产生极短波长电磁波的可能性。经过3年努力,他终于用他自己研制成的电子管产生了波长仅1厘米的连续振荡,创下了三极管产生微波连续振荡的一项世界记录。孟昭英以k此获得博士学位,并在美国无线电工程师学会(IRE)洛杉矶分会上宣读了这篇论文,他随之以“研制振荡波长最短的电子管”而闻名于世。
孟昭英制成的这种电子管的阳极是内径仅1毫米的镍管,栅极是用细钨丝绕制成的螺旋管,阴极是一根直钨丝。把这样小的电极精确地装配起来确非易事,为此他自制了小型点焊机,有些地方不易点焊,就用胶状石墨粘接,并用目测法调中心线。电子管研制成功之后,他细致地调节各极电压,终于获得极短波长的振荡。当时要测量这样短的波长没有现成的仪器,于是他采用带短路桥的平行双线(一般称为勒谢尔线)。当短路桥移动到一定位置时,电极电流发生变化,两次相同变化之间的距离即为半波长。用此法测得振荡波长为1厘米。
1936年,孟昭英获得加州理工学院哲学博士学位。孟昭英工作出色而获得“真空电子学专家”的称号。
1936年,孟昭英启程回国,任燕京大学物理系副教授,讲授无线电及电子学方面的课程。他是国内较早开设这类课程的学者之一。
1937年7月,中国物理学会计划在杭州召开学术年会,孟昭英从北平赶到天津等船南下。正逢“七七事变”爆发,会议被取消。在天津他遇到也准备南下的吴有训、周培源、赵忠尧等清华大学物理系教授,在了解到北平情况后,就只身从天津随清华大学南下到长沙,并在由北京大学、清华大学、南开大学联合组成的长沙临时大学任教。在长沙,他还建立了一个业余无线电台,教部分学生掌握无线电收发报技术。
1938—1943年,孟昭英在昆明清华无线电研究所任教授,同时兼西南联合大学物理系名誉教授,与任之恭教授一起为物理系及电机系讲授无线电及电子学课程。在这期间,孟昭英完成了三极管射频放大器线性调幅的研究工作。研究成果于1940年在美国无线电学会的期刊DIRE上发表,受到国际同行关注。
1943年,孟昭英再次赴美国加州理工学院访问。此时微波研究在美国已获得长足进展。孟昭英选择了金属波导中阻抗的精确量测作为研究课题。金属波导在当时是刚刚问世的新型微波元件。他所用的方法是在波导终端放置一个扼流活动短路装置,使之形成谐振腔。具有可移动短路活塞的谐振腔是微波频率的精确测量仪器。由于谐振腔的品质因数很高,用这种方法量测波导中的阻抗具有很高的灵敏度和精确度,经过一年的研究,终于获得成功,并获得一项美国专利。
1944年,孟昭英转到麻省理工学院“辐射馆”工作,研究战时需要的雷达发送—接收开关(TRBox)。这项工作因涉及战时机密而未有文章公开发表。当美国在广岛爆炸了原子弹而日本无条件投降后,战时研究停止,孟昭英转入研究氧气在微波的吸收光谱。在美国的《物理评论》发表了研究结果。这是微波吸收光谱学里最早的研究成果之一,也是应用毫米波于科学研究的开端。研究中所用的基本实验技术被后来的研究者广泛应用。
1945年,孟昭英立即转入和平时期的基础研究。在本世纪40年代,量子力学理论及物质微观结构研究已蓬勃发展,理论研究发现许多原子或分子的能级跃迁处于微波频段,但因缺乏该频段的实验手段而未能获得实验证实。孟昭英利用辐射实验室的极佳的微波实验条件,与当时的研究生,后来的麻省理工学院教授史特朗勃格(M.W.P.Strandberg)及另一位技术员合作,研究氧气在5毫米波段的吸收谱。所用的信号源是带有谐振腔稳频系统的反射速调管,由它产生的1厘米振荡经硅晶体二极管倍频获得5毫米的信号。接收系统是由一个谐波变频器、中频放大器及相位器组成的微波外差接收机。实验测得纯氧及氧氮混合气体的氧吸收波谱,其吸收量及波谱形状与用量子力学计算得出的值符合得相当好。他们的论文“氧的毫米波吸收波谱”发表于1949年美国《物理学评论》上。孟昭英等人被尊为微波波谱学这一重要实验物理学分支的先驱者之一。
1984年,孟昭英出任清华大学现代应用物理学系在建的单原子探测应用实验室顾问,以极大的热情指导该实验室研究工作的开展,包括使建成的实验室成为国家教委的一座开放实验单位和承接了国家“七五”重点攻关项目——激光单原子探测技术在地质找矿中的应用课题,并在原子光谱以及金和铂元素的超灵敏分析方面取得阶段性成就。此外,他还担任了9名专攻单原子探测课题的博士研究生导师,指导其中的马万云研制成功了旨在填补中国超高灵敏微区分析空白的首台自制的溅射原子化学共振电离飞行时间质谱仪;并且不顾越洋跋涉的劳累,沟通了该实验室和美国权威学者赫斯特(G.S.Hurst)及其实验室的联系,促进了中美学术交流。
在国际关系研究理论中,层次分析法是研究国家外交政策的一种独特方法,个人层次是层次分析法之一。下面我为大家带来意思和相关用法,欢迎大家一起学习!
意思
Unique method
独特方法的相关英语例句
1. Read about unique ways to share some happiness around.
看看分享快乐的独特方法.
2. Result Unique method is established for recovery pattern of heavy oil reservoirs.
结果对稠油油藏开采方式的筛选制定了独特方法.
3. Ron's unique methods not only raised test scores they also gained worldwide attention.
隆的独特方法不仅提高了班级的考试成绩,他们还赢得了全世界的注意.
4. Each person has a unique way of seeing, hearing, touching, tasting and thinking.
每个人都有自己观察 、 听闻 、 触控 、 品尝和思考的独特方法.
5. Read about unique ways to share some happiness around . The world needs it badly.
看看分享快乐的独特方法. 世界很需要快乐.
6. He devised a way of coding every statement uniquely.
他设计了一种把每句话进行独特编码的方法。
7. pared with other methods, aquatic plant purification method shows unique feature.
通过与其他方法的比较, 说明了水生植物净化法有其独特的优点.
8. He could determine uniquely the properties of the pound.
他能够用独特的方法测定出这一化合物的性质.
9. Use unique asses *** ent process to identify employee's preferred motivational approach.
采用独特的评估方法,从而辨识最适合驱动个别员工的激励方法.
10. The experiment indicates that the method is efficient and practicable.
实验证明了条纹分析方法的高效性和实时性要求的独特效能.
11. The double plex function method is a unique method in general relativity.
二重复函式方法是广义相对论中一种新颖、独特的理论.
12. After the instruction, has some unique diagnosing and treating method.
经过家师的指导, 有一些独特的诊疗方法.
13. Has developed personal strategies and methods for influencing others.
有自己的独特的策略和方法,总是可以说服他人.
14. Making sol - gel is a special method rm anufacturing thin film.
溶胶 — 凝胶法是制备薄膜的一种独特的方法.
15. Its core lies in its unique *** ytic tool: inframarginal *** ysis.
其理论的核心在于该理论独特的分析工具: 超边际分析方法.
独特方法的英文例句
它反映神用独特方法塑造你,使你能服事他。
It reflects the unique ways God made you to serve him.
找到推进和出售这种知识的独特方法是关键所在。
Finding a unique way to promote and sell this knowlege is the key.
看看分享快乐的独特方法。
Read about unique ways to share some happiness around.
电脑科学的学生通过学习,所能获得的最有价值的知识就是处理和解决问题的独特方法。
The most valuable thing that CS students learn from their studies is a particular way toapproach and solve problems.
他们都认为自己,有解决这些问题的独特方法。
They've got some approach that they believe is unique in trying to solve some of theseproblems.
NetBSD的与计算机无关的驱动程式框架是一种处理装置驱动程式的独特方法,并且是简单而快速的移植的关键。
NetBSD's machine-independent driver framework is a unique method of handling device drivers,and it's crucial for simple and quick ports.
通过使用WebSphereProcessServer 来处理包括业务流程管理 BRMS 在内的更大技术元件,IBM正在采取一种独特方法来实现业务规则。
With the WebSphere Process Server, IBM is taking a unique approach towards Business Rule *** y taking care of the bigger technological ponent that enpasses BRMS -- BusinessProcess Management.
Viner于2005年创办Yellowbrick,当时他在芝加哥一家群体心理治疗诊所工作,发现了治疗这些人的独特方法。
Viner started Yellowbrick in 2005, when he was working in a group psychiatric practice inChicago and saw the need for a different way to treat this cohort.
广告及市场推广的独特方法在经营模式中是另一个影响Zara成功的因素。
Zara’s unique approach to advertising and marketing is an additional factor within their busines *** odel that adds to their success.
每个人都有自己观察、听闻、触控、品尝和思考的独特方法。
Each person has a unique way of seeing, hearing, touching, tasting and thinking.
这本书需要对这个困难的程式设计主题的有趣的方法,教学的基本读者,他们需要知道通过游戏程式设计的独特方法。
This book takes a fun approach to this difficult programming topic, teaching readers thefundamentals they need to know through the unique method of game programming.
如果他们有欣赏他们的独特方法、并且不会坚持让他们写法律信函的老师,这就最好了。
It is best if they have teachers who appreciate their unique approach and who do not hold themto the letter of the law.
在墨西哥城儿童医院拉斐尔·瓦尔德斯博士设计了一种将这些细胞移植入人体的独特方法。
At the Mexico City Children's Hospital, Dr Rafael Valdes developed a unique method oftransplanting the cells.
独特方法的双语例句
他有一种使他的课生动、有趣的独特方法。
He had a strange way of making his classes lively and interesting .
在国际关系研究理论中,层次分析法是研究国家外交政策的一种独特方法,个人层次是层次分析法之一。
In the theories of international relationship research, the level *** ysis, especially the personallevel *** ysis, is a special way in the study of a country's foreign policy.
全面生产率管理是一种改进生产率的独特方法。
Total proctivity management is a particular approach to proctivity improvement.
巴氏噪声分析BNA是一种检测铁磁材料微观应力及金相组织的独特方法。
Barkhausen noise *** ysis BNA is a distinctive measure for testing microscopic stresses andmetallurgical structure in ferromagnetic materials.
实践天生的社会公正论是不同于预成论、还原论的思维正规化与独特方法,它坚特物质第一性,意识第二性。
The theory of practice and generation a unique way of thinking which is different withpreformation and rectioni *** , it insists the doctrine that matter is the only reality.
本仪器应用通过眼睑测量眼内压的独特方法为眼压测量提供了新资源,简单,检测安全。
The unique methodology of intraocular pressure measuring through the eyelid applied in thedevice provides new resources in ophthalmotonometry , simplicity and safety of tests.
有多年教外国语的经验,在教学上有自己的独特方法,善于引导和开发学生的学习兴趣。
She has many years experience for teaching foreign language. She has her own unique way toteach students. She is good at guiding students for developing their interest in studying.
在几十年临床工作中总结了一整套治疗阳痿、早泄、勃起功能障碍的独特方法,取得了显著疗效。
Decades of clinical work, sum up the whole treatment of impotence, premature ejaculation,erectile dysfunction in a unique way, has made a significant effect.
我对先民的独特方法印象深刻。
I am impressed by the unique approach of the primitive people.
同样的中国山水画也是中国人认识世界和表现世界的独特方法;
Same distinctive method being also that Chinese understands the world and showing the worldin Chinese landscape painting;
是东山岭餐厅用独特方法密制而成的烙饼,看上去有点类似北方的千层饼,但吃起来却更为香、酥、软、脆。
The pancake is made by Dongshanling Restaurant with a special recipe. It looks more or lesslike "Thousand-layer Pancake" in North China, but it is more fragrant, crispy and soft.
治疗脚病有独特方法方式,使患者无痛苦并迅速康复!
Use the particular cure of chiropody, so, lighten suffering of sufferer.
治疗脚病有独特方法方式,使患者无痛苦并迅速康复!
Use the particular cure of chiropody, so, lighten suffering of sufferer.
看过相关知识人还: